Oxovanadium(V)-Induced Vicinal Dialkylation of Cyclic Enones with Organozinc Compounds

LETTERS 2000 Vol. 2, No. 23 ³⁶⁵⁹-**³⁶⁶¹**

ORGANIC

Toshikazu Hirao,* Takashi Takada, and Hidehiro Sakurai

Department of Applied Chemistry, Faculty of Engineering, Osaka University, *Yamada-oka, Suita, Osaka 565-0871, Japan*

hirao@ap.chem.eng.osaka-u.ac.jp

Received September 8, 2000

ABSTRACT

Oxovanadium(V) compounds induce nucleophilic α,*β*-vicinal dialkylation of cyclic α,*β*-enones with dialkylzinc reagents. Alkylzinc enolates **generated from cyclic enones and lithium trialkylzincates were also oxidized by VO(OEt)Cl2, giving 2,3-dialkylcycloalkanones.**

Oxidative transformation of main-group organometallics has been expected to develop a new type of carbon-carbon bond-forming reaction.^{1,2} Recently, we reported that oxovanadium(V) compounds induce a selective ligand coupling of two ligands on some organometallic compounds such as organoaluminum,³ boron,⁴ zirconium,⁵ and zinc compounds.⁶ As for the organozinc compound, arylalkylzinc or aryldialkylzincate is oxidized by $VO(OEt)Cl₂$, providing a ligand coupling product selectively (Scheme 1).6

On the other hand, dialkylzinc reagent $(R₂Zn)$ is recognized as a mild nucleophile, and highly selective reactions have been developed by a combination of an additional promoter such as a Lewis acid catalyst.7 It is known that 1,4-addition of dialkylzinc to an α , β -unsaturated carbonyl compound also requires promotion by a Lewis acid. Judging from the characteristic features of oxovanadium(V) compounds as a Lewis acid and one-electron oxidant, they are expected to induce a novel nucleophilic vicinal dialkylation

⁽¹⁾ For chemical redox reagents of organometallic chemistry, see: Connelly, N. G.; Geiger, W. E. *Chem*. *Re*V. **¹⁹⁹⁶**, *⁹⁶*, 877 and references therein.

⁽²⁾ For copper-induced oxidative ligand coupling reactions of organoborons and organozincs, see: (a) Yamamoto, Y.; Yatagai, H.; Maruyama, K.; Sonoda, A.; Murahashi, S.-I. *J. Am. Chem. Soc.* **1977**, *99*, 5652. (b) Iyoda, M.; Kabir, S. M. H.; Vorasingha, A.; Kuwatani, Y.; Yosihda, M. *Tetrahedron Lett.* **1998**, *39*, 5393. For oxidative transformation of d0 organometallics, see: (c) Jordan, R. F.; LaPointe, R. E.; Bajgur, C. S.; Echols, S. F.; Willet, R. *J. Am. Chem. Soc.* **1987**, *109*, 4111. (d) Borkowsky, S. L.; Baenziger, N. C.; Jordan, R. F. *Organometallics* **1993**, *12*, 486. (e) Burk, M. J.; Tumas, W.; Ward, M. D.; Wheeler, D. R. *J. Am. Chem. Soc.* **1990**, *112*, 6133. (f) Sato, M.; Mogi, E.; Kumakura, S. *Organometallics* **1995**, *14*, 3157. (g) Hayashi, Y.; Osawa, M.; Wakatsuki, Y. *J. Organomet. Chem.* **1997**, *542*, 241.

⁽³⁾ Ishikawa, T.; Ogawa, A.; Hirao, T. *J. Am. Chem. Soc.* **1998**, *120*, 5124.

⁽⁴⁾ Ishikawa, T.; Nonaka, S.; Ogawa, A.; Hirao, T. *J. Chem. Soc., Chem. Commun.* **1998**, 1209.

⁽⁵⁾ Ishikawa, T.; Ogawa, A.; Hirao, T. *J. Organomet. Chem.* **1999**, *575*, 76.

⁽⁶⁾ Hirao, T.; Takada, T.; Ogawa, A. *J. Org. Chem.* **2000**, *65*, 1511.

⁽⁷⁾ For organozinc mediated reactions, see: (a) Knochel, P.; Perea, J. J. A.; Jones, P. *Tetrahedron* **1998**, *54*, 8275 and references therein. (b) Knochel, P.; Singer, R. D. *Chem*. *Re*V. **¹⁹⁹³**, *⁹³*, 2117 and references therein.

at both the β - and α -positions of an α , β -unsaturated carbonyl compound with a dialkylzinc reagent (Scheme 2). That is,

the oxovanadium (V) compound might promote 1,4-addition of R_2Zn to enone 1, and the resulting zinc enolate is immediately oxidized by the adjacent oxovanadium(V) species, giving the corresponding vicinally dialkylated compound **2**.

To accomplish this kind of vicinal alkylation, first, the reaction of 2-cyclohexenone (**1**) with dimethylzinc in THF was investigated (Table 1). Dimethylzinc was inert to **1** without an oxovanadium(V) complex (entry 1), whereas VO- (OPrⁱ)₃ activated only the 1,4-addition process to give 3-methylcyclohexanone (**3a**) in 34% yield (entry 2). Use of $VO(OEt)Cl₂$, a more efficient Lewis acid and oxidant than VO(OPrⁱ)₃,⁸ led to the formation of 2,3-dimethylcyclohexanone (2a) in 26% yield as a diastereomeric mixture.⁹ This result encouraged us to examine the precise reaction conditions. When the reaction was carried out at -78 °C for 4 h and then at -30 °C for 6 h, the yield of 2a was increased to 60% (entry 4). Next, the substituent of oraganovanadium- (V) compounds was screened to find that the stronger Lewis acid and oxidant gave the better results. Accordingly, the yield of **2a** decreased in the order $VO(OEt)Cl₂ > VO(OPrⁱ)$ -
Cl₂ > VO(OPrⁱ)-Cl₂ to 60% 56% and 20% respectively $Cl_2 > VO(OPr)₂Cl$ to 60%, 56%, and 20%, respectively (entries $4-6$)⁸ Finally the vield of 28 was improved to 78% (entries $4-6$).⁸ Finally, the yield of **2a** was improved to 78% when 2 molar equiv of dimethylzinc and 2 molar equiv of VO(OEt)Cl₂ were employed at -78 °C for 20 h (entry 7).¹⁰

Table 1. Vicinal Dimethytlation of **1** with Dimethylzinc*^a*

^a1.3 equiv ot Me₂Zn in entries 1-6 and 2.0 equiv in entries 7-9 were used. ^bDetermined by ¹H NMR.

When the solvent was replaced with ether or dichloromethane, the yield of **2a** decreased (entries 8 and 9).

The same dialkylation takes place with diethylzinc as shown in Table 2. Furthermore, this method could be applied to trialkylaluminum (R_3A) ³ and trialkylborane (R_3B) ⁴ compounds. Diethylation of **1** with diethylzinc, triethylalminum,

^aMe₂CuLi was prepared from Cul and 2.0 equiv of MeLi in situ. ^bDetermined by GC analysis. ^cIsolated yield was 72%. disolated yield was 75%. ^e1 (18%) was recovered.

⁽⁸⁾ The order of the reactivity of oxovanadium(V) reagents is as follows: $VO(OR)Cl_2-AgOTf$ or $Me₃SiOTf > VO(OR)Cl_2 > VO(OR)₂Cl$ > VO(OR)3. Hirao, T.; Mori, M.; Ohshiro, Y. *Bull. Chem. Soc. Jpn*. **¹⁹⁸⁹**, *62*, 2399. Hirao, T.; Mori, M.; Ohshiro, Y. *J. Org. Chem*. **1990**, *55*, 358. Hirao, T.; Mori, M.; Ohshiro, Y. *Chem. Lett*. **1991**, 783.

⁽⁹⁾ The regiochemistry of dialkylated compounds **2a**-**^c** was determined by ${}^{13}C-{}^{13}C$ cosy using the 2D-INADEQUATE technique (CDCl₃, 25 °C) and that of **7** was determined by 1D,2D-HOHAHA. The *trans*/*cis* stereochemistry of **2a** and **7** was determined by NOE. The *trans*/*cis* stereochemistry of **2b** and **2c** was determined by $J_{\text{CH-CH}}$ coupling constant (for example, major *trans*-**2c**, 7.8 Hz, minor *cis*-**2c**, 4.9 Hz).12

and triethylborane proceeded smoothly to afford the 2,3 diethylcyclohexanone **2b** in 74%, 84%, and 50% yields, respectively (Table 2, entries $1-3$). In contrast, an organocuprate reagent exhibited no reactivity toward the oxidative coupling at the α -position and gave only conjugate addition product **3a** quantitatively (entry 4).

Contrary to dialkylzinc, lithium trialkylzincate $(R₃ZnLi)$ has enough nucleophilicity for conjugate addition to an α , β unsaturated carbonyl compound without the aid of a Lewis acid.⁷ Moreover, the oxovanadium(V)-induced ligand coupling of aryldialkylzincates proceeds more effectively than that of alkylarylzinc compounds as reported.⁶ In fact, $Me₃$ -ZnLi (1.2 equiv) added to 2-cyclohexenone to afford the zinc enolate, which underwent oxovanadium(V)-induced oxidation, giving **2a** in 78% yield (Table 3, entry 1). This twostep procedure can be applied to various lithium trialkylzincates, affording the corresponding vicinally dialkylated cycloalkanones in good yields (Table 3). Butylzinc enolate **5c** generated from 1 and Bu₃ZnLi was oxidized by VO(OEt)-Cl2, giving dibutylcyclohexanone **2c** in 75% yield (entry 2). When Bu₃ZnLi-TMEDA,¹¹ prepared from a ZnCl₂-TMEDA complex and BuLi, was used as a reagent for vicinal alkylation of **1**, **2c** was obtained in 98% yield (entry 3). 2-Cyclopentenone similarly underwent oxidative vicinal alkylation with $Bu_3ZnLi-TMEDA$ to give 2,3-dibutylcyclopentanone (**7**) in 56% yield (entry 4). It is noteworthy that two different alkyl groups can be introduced regioselectively, giving 2-methyl-3-butylcyclohexanone **2d**, when $Me₂BuZnLi¹¹$ was employed (entry 5).

In summary, a novel nucleophilic vicinal dialkylation at both the α - and β -positions of cyclic α , β -enones with an

shown in parentheses.

organozinc compound is induced by an oxovanadium(V) compound. This method permits selective 1,4-addition and oxidative ligand coupling in a one- or two-step procedure.

Acknowledgment. The use of the facilities of the Analytical Center, Faculty of Engineering, Osaka University, is acknowledged. This work was partly supported by a Grantin-Aid for Scientific Research (No. 11450341) from the Ministry of Education, Science, and Culture, Japan.

Supporting Information Available: Experimental procedures and spectral data. This material is available free of charge via the Internet at http://pubs.acs.org.

OL006564P

⁽¹⁰⁾ **Typical procedure for vicinal dialkylation**: To a solution of **1** (1.0 mmol) in THF (2.0 mL) under argon at -78 °C was added Me₂Zn $(2.0 \text{ mmol}, 2.0 \text{ mL}, 1.0 \text{ M} \text{ in Hexane})$ followed by VO(OEt)Cl₂ (2.0 mmol), and the mixture was stirred for 20 h at -78 °C. Workup gave the desired dialkylated product **2**.

⁽¹¹⁾ Tu¨ckmantel, W.; Oshima, K.; Nozaki, H. *Chem*. *Ber*. **1986**, *119*, 1581.

⁽¹²⁾ Kitamura, M.; Miki, T.; Nakano, K.; Noyori, R. *Tetrahedron Lett.* **1996**, *37*, 5141.